Reconstruction methods Gridding and Parallel Imaging

Michael Væggemose

7. October 2024

Disclosures – MR Research Scientist

Agenda

- Gridding
 - Non-Cartesian reconstruction
 - K-space resampling
 - Gridding artefacts
 - Oversampling and de-apodization
- Parallel Imaging
 - SENSE | ASSET
 - GRAPPA | ARC
 - Compressed Sensing | HyperSense |Compressed Sense
 - Multiplex | HyperBand | MultiBand | SMS (If time allows)
- Hyperpolarized applications

Gridding

Acquisition trajectories

Non-Cartesian Reconstruction

K-space resampling methods (Gridding)

Gridding artifacts

Reconstruction

Undersampling k-space

How to accelerate MRI?

- Record half the k-space
 - Half-Fourier

- More k-space points pr excitation
 - FSE, EPI, CUBE/SPACE/VISTA, etc.

Undersampling k-space

• SENSE, GRAPPA, Compressed Sensing

Conventional k-space recording

Undersampling of k-space

Parallel Imaging

Conventional recording

Parallel Imaging – the elements

Coil 2

SENSE

SENSE – coil sensitivity profile

SENSE – linear algebra

How much can we accelerate?

Parallel Imaging and g-factor

R = 2.0

R = 2.4

R = 3.0

$$SNR^{SENSE} = \frac{SNR^{SUII}}{\sqrt{R} \cdot \vec{g(x)}}$$

$$\vec{g(x)} = \sqrt{\left(E^{H}E\right)_{i,i}\left(\left(E^{H}E\right)^{-1}\right)_{i,i}} \ge 1$$

SENSE – SNR vs time

Conventional R = 2(TA 84 sec) (TA 44 sec) (TA 32 sec) (TA 24 sec)

R = 3

R = 4

GRAPPA

GRAPPA – interpolation in k-space

Grisworld MA, Generalized autocalibrating partially parallel acquisitions (GRAPPA), MRM, 2002

How to interpolate k-space?

0th order hold

Linear interpolation

S_{ky}

ky t

GRAPPA – interpolation in k-space

SENSE vs GRAPPA

SENSE: Coils sensitivity profiles, reconstruction in image domain. GRAPPA: Interpolation of k-space, reconstruction in k-space.

Parallel Imaging - applications

- Performing fast scans and thereby reducing motion artifacts
- Completion of scan in a breath hold
- Higher temporal resolution for dynamic scans
- Reduction of susceptibility artifacts by EPI sequences
- Higher spatial resolution at the same scan time
- Fewer RF pulses and thus reduction of SAR
- SENSE (image) or GRAPPA (k-space) method

Compressed Sensing

Compressed Sensing

1. K-space sampling

Undersampling + incoherent sampling

- 2. Wavelet transformation Sparsity in data Filtering
- 3. Iterative reconstruction

1. K-space samling

All samples

Uniform Undersampling

"Incoherent" Undersampling

"Incoherent" Undersampling, Increased density at centre

2. Wavelet transformation

k-space

Image domain

Wavelet

Uecker M., et.al. Software Toolbox and Programming Library for Compressed Sensing and Parallel Imaging. ISMRM Workshop on Data Sampling and Image Reconstruction. Sedona, 2013

2. Wavelet transformation (components)

3. Iterative reconstruction

Encoding, De-noising, & Sparsity-enforcing regularization

$\hat{\mathbf{x}} = \arg \min \{ \|\mathbf{E}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \mathbf{\Lambda} \|\mathbf{T}\mathbf{x}\|_{1} \}$

Knoll F., et.al. Second Order Total Generalized Variation (TGV) for MRI. Magn Reson Med. 2011;65(2):480-491

Compressed Sensing - applications

- Faster image acquisition
- Better image quality
- Can be used for all anatomical areas
- Can be used in both 2D and 3D sequences, but not EPI
- Faster breath hold / dynamic images

Multiplex

Conventional interleaved acqusition

Conventional acqusition

Signal

Conventional acqusition

Multiplex acqusition

Multiplex acqusition

Coil element no. 1

Coil element no. 2

Coil element no. 1 + no. 2

Multiplex - applications

- More slices per. excitation
- Uses coil sensitivity for separation
- 1.5-3 acceleration without loss of SNR
- Can be combined with Parallel Imaging
- Reduces scan time by e.g.:
 - Multiple slices
 - Fewer NEX
 - Fewer recordings

Mulitplex – why in diffusion?

- Multiple shells (b-values)
- Scan efficiency
- Higher resolution
- Isotropic solution
- Thinner slices
 - All in one TR
 - Larger z-FOV

SIGNA[™] Architect 3.0T 48 channel Head coil b-value 1000 HyperBand factor = 2 ARC = 2 Voxels = 2.00mm isotropic Number of diffusion directions = 60 Number of b-0 volumes = 8

Total scan time = 8 minutes

3D M3D/BRAVO: Sag T1... ARCHITECT HEAD 48ch Head coil DTI 60dir ISO 2mm DFOV 26.9 x 24.0 cm SRP 70 % Ex:Mar 09 2017 Gantry OFF Default No VOI 1.0mm /1.00sp W = 8208 L = 4144 ILA

Hyperpolarized applications

Hyperpolarized applications

SENSE w. 23Na map in HP 13C imaging

(D) Fully sampled ¹³C image. (E) Under sampled ¹³C image. (F) Under sampled SENSE reconstructed image.

Compressed sensing to facilitated single-breath 3D multiple b-value 129Xe DW-MRI acquisitions

Thank you For your attention

Moesgaard Forest, Aarhus