in magnetic resonance spectroscopy

ATHE FOR

Rolf Schulte

GE HealthCare

Overview

- Lineshape
- Solvent signal
- Baseline
- Phase
- Chemical-shift displacement
- Eddy currents
- Truncation
- DC-Offset
- RF interference
- Frequency drift
- Receiver gain
- Spike noise
- Gradients
- Motion artefacts
- Radiation damping
- RF coils
- SNR
- Discussion and conclusion

Lineshape

GE HealthCare

Lineshape: Peak Distortions

 (36) **GE HealthCare**

Lineshape: B0 Field Inhomogeneity

- Susceptibility differences in sample (eg: air – tissue) \rightarrow B₀ inhomogeneity
- Residual scanner inhomogeneity

Remedies

- Shimming
- Choose benign regions
- Reconstruction with B_{0} correction
- Lower B_0

Δ f0 [Hz]

Solvent Signal

Water (+ fat): $10^5 \times$ stronger than metabolites (in 1H MRS)

 \rightarrow Problems with baseline + artefacts

- Suppression through selective experiments: e.g., CHESS: f-selective excitation of H_2O and gradient spoiling
- Removal during post-processing: e.g., HSDV

Baseline Distortions

- Mostly from first few points in FID
- Fast relaxing macro-molecules
- Poor water suppression
- Quantification hampered

- Different region
- \bullet Improve shim, ${\sf H_2O}/$ fat suppression
- f -domain: fit polynomial/ spline
- t -domain: take out first points

Baseline Distortions: Spline Fit (LCModel)

gshn3_1st_r_press30 PRESS TE=30 TR=2000 Data of: Institute of Biomedical Engineering, University of Zurich and ETH Zurich

GE HealthCare

INDUT CHANGES OELTAT-0.0005

Phase Correction

- Phase of spectra generally unknown
- Zeroth order phase: switching of oscillator frequency
- Linear phase: delayed sampling start (e.g. fidcsi \approx 2ms)

- Phase correction: multiply FID with $\exp(i\varphi + i\omega t)$
- Large linear phase
	- \rightarrow correction distorts peaks
- Display magnitude Con: broader peaks

Chemical-Shift Displacement

- Bandwidths (BW) of RF pulses limited
- Gradients (gmax) for localisation limited
- Molecules with different chemical shifts are displaced
- 13C Example:
	- Bi-carbonate (161 ppm) & ${}^{13}CO_2$ (125 ppm) $\rightarrow \Delta f = 1200 \text{ Hz } (B_0 = 3T)$ BW RF = 2200 Hz \rightarrow 1/2 slice displacement
- 1H MRS Example:
	- Lactate A_3 (1.3ppm) & X (4.1ppm) $\rightarrow \Delta f=360$ Hz (B₀=3T) BW RF = 800 Hz \rightarrow 1/2 voxel displacement

- Centre f_{0} in between
- Increase gmax/RF BW
- Use spectral-spatial pulses
- Reduce gmax/RF BW and utilise displacement for encoding
- Broadband pulses

Eddy Currents

Conductive material in scanner

- \rightarrow induction of eddy current
- Additional gradients (time + space dependent)
- Distorted lineshapes
- Intricate compensations already existing (optimised hardware + gradient pre-distortion)

- Use robust encoding methods *(eg Cartesian trajectories)*
- Derate gradients
- 1H MRS(I): division of phase of FID by reference *(eg Klose correction)*
- Measure distortion and correct for in reconstruction *(eg Dyun method, gradient monitoring with field probes)*

Eddy Currents: f0 Modulation in MNS

Eddy current compensation ("grafidy" on GE) consists of

- Pre-emphasis of gradient waveforms fed into gradient amps
- Modulation of centre-frequency f0

Model coefficients determined via measuring response to gradient pulses with gradient probes at different spatial positions

Problem with MNS: f0 modulation relative to 1H freq

 \rightarrow overcompensation for other nuclei

Remedies

- Modify calibration files for MNS (not recommended)
- Upgrade to MR30 (fixed in product now)

Courtesy to Mary McLean, Cambridge

Sidebands

- Gradient vibrations
- Cyclic eddy currents
- Strong solvent signal

- Better water suppression
- Hardware modifications: mount gradients centric + better
- Post-processing: correct with reference signal, modelbased removal

Truncation Artefact

Too short sampling

• Step function \rightarrow sinc wiggles

- Longer sampling
- Filtering
- Linear prediction/ maximum entropy

DC Offset

- Decay to constant
- Delta peak at zero-frequency

- Phase cycling
- Subtract last 10% of FID

Ghosts

GE HealthCare

- Insufficient water suppression outside VOI \rightarrow huge water signal
- Small imperfections of 180° pulses + insufficient spoiling \rightarrow generation of echo outside VOI
- Especially with 2^{nd} order shimming

Ghosts

- More crusher gradients
- Phase cycling
- Wider f-selectivity
- Less 2^{nd} order shimming
- Filtering
- Different angulations

RF Interference (Frequency Domain)

Additional RF signal

- Reception in RF coils
	- \rightarrow interference with measurements
- Leakage through RF cabin \rightarrow Shielding of room interrupted
- Bad equipment inside room: injection pump,…
- System components emitting noise: gradient amplifier, RF amplifier, power supplies, receive electronics, local oscillators, displays, …

MRI scanners developed and optimised on 1H frequencies MNS: many frequency bands, lower frequencies challenging

- Track down + eliminate source
- Systematically power off external devices (injector pumps, power supplies) and system components (1H amp, grad amp, power supplies, displays); relocate Rx cables
- Ground (BNC) cables entering MRI room
- Phase cycling
-

RF Interference: Example

(electronic) power supply leaking RF noise inside MR scanner room

RF Interference: Systematic Noise Scan

- Use large coil, no RF excitation
- BW=125kHz, #pts=8192, #reps=256
- Power spectrum = sum-of-squares spectrum
- Fidall manual 9.9

Frequency Drift

- Short-term \approx 10-200 Hz/h after excessive gradient usage (eg after fMRI/EPI session)
- Long-term: 10-1000 Hz/years
- Long measurements with many averages: centre frequency shifts \rightarrow peaks smear out
- Patient motion

- Newer scanners with water cooled amplifiers more stable
- Avoid MRS after EPI scans
- f_0 determination before each scan
- Save + correct raw data
- Measure and correct f_0 in every repetition

Receiver Gain

Pre-amplification:

• Too high: signal overflow & saturation of receiver

• Too low: digitisation noise

Receiver Gain on GE

- R1: analogue receiver gain: pre-amplification depends on signal level and coil pre-amplification
- R2: digital receiver gain: digitisation
- Normal MRI: Automatically determined in auto prescan
- Hyperpolarised studies: signal level unknown beforehand

- Always observe system error log for over-range warnings (≥MR30: requires key)
- Adjust R1 properly, establish safe ranges
- R2=maximum: (digital receive gain) EDR off=15, EDR on=30

Receiver Gain: 13C Example

- Liquid-state polarisation measurement
- [1-13C]pyruvate syringe
- Saturation of receiver chain
- 1st acquisition: signal level too high
- 8th acquisition: signal level OK

Receiver Gain: 19F example

FID + gradients

- 19F spiral imaging of Perfluorocyclobuthan
- R1=11, R2=30
- Extensive averaging is summing up data

Spike Noise (Time Domain)

- Acquisition contaminated by spikes
- Severity: increased noise to data unusable
- Sources:
	- Moving metal: quad-hybrid in gradient FOV, gradient cables, coin/splinter in bore, loose body coil capacitor, …
	- Poor electrical contact: gradient cables not tightened enough
	- Broken gradient amplifier
	- \bullet …

Remedies

- Locate source and remove
	- helpful tool: sniffer coil
- Null contaminated data
	- in matlab: look for outliers
	- on scanner: pickup loop connected to detector
	- \rightarrow Warning: can also null regular MNS (eg 2H) data

Pickup antenna at MR scanner for "Universal Transient Noise Suppression"

Gradient Artefacts

- Noise elevated by gradients (particularly z-axis)
- Can be present even if gradients not used (eg Deuterium)
- Sources:
	- Gradient amplifiers and power supplies produce high frequency noise
	- Insufficient low-pass filter for gradient cables in penetration panel
	- Large Rx RF coils close to gradients

Remedies

- Impossible to filter out after data acquisition
- Improve low-pass filter of gradient cables \rightarrow add ferrites
- Improved gradient filters

13C spiral data acquired in different orientations without phantom

Spike Noise Artefact: Systematic Test

- Run strong spiral gradient waveform along different axes
- No RF excitation, large bandwidth
- Display time and frequency domain
- Fidall manual 9.1

Gradient Delay

- Gradient amplifiers switching large currents in very short time spans \rightarrow different delays between gradients (100-200µs) and RF (1-5µs)
- System calibration: compensates most
- Small deviations (few µs) remaining
- Problematic mostly for Non-Cartesian acquisitions
- Spiral: rotation of object
- Radial: low frequency intensity variations
- EPI & SPSP (with bi-directional gradients): ghosting
- Fidall manual: 9.8, 8.5

-9µs -6µs -3µs -0µs 3µs 2D full-spoke radial reconstructed with different gradient delay times

Motion Artefacts

- Motion corrupts data consistency
- Blurring, loss of signal, smearing out (particularly for non-Cartesian difficult to predict)

Remedies

- Acquire faster
- Breath hold/intubation
- Cardiac triggering
- Correction in reconstruction

¹³C IDEAL Spiral CSI in Pig Heart

(courtesy to CNR Pisa)

Radiation Damping

Strong sample signal \rightarrow induces strong current in coil \rightarrow induces again flip in sample

, 2 $\exp\left[-\frac{t}{T^*}\right] \cdot \text{sech}\left[\frac{t}{T} - \ln\right] \tan \frac{\omega_0}{2}$ 2 $\vert 0$ exp $\vert -\frac{1}{T^*} \vert \cdot$ sech $\vert -\frac{1}{T} \vert \cdot \vert \tan \frac{1}{2} \vert \vert$ \rfloor $\overline{}$ ļ. L ļ. $\overline{}$ \int \setminus L \setminus $\bigg($ $\left|\cdot \text{sech}\right| \frac{1}{\tau}$ \int \setminus $\overline{}$ \setminus $\bigg($ $= M_{0} \exp \left(-\frac{1}{2} \right)$ $\frac{t}{\tau_{rd}} - \ln\left(\tan\frac{\theta_d}{2}\right)$ *T t signal M* $(\gamma \eta m_0 Q \mu_0 / 2)^{-1}$, $_0$ U μ_0 $\tau_{rd} = (\gamma \eta m_0 Q \mu_0 / 2)^{-1}$

- Occurs in syringes, e.g. liquid state polarisation
- In vivo: signal level typically too low

RF Coils

- 1H MRI (@3T): sample noise dominated \rightarrow even lousy coils yield good images
- x-Nuclear MR: mixed regime
	- \rightarrow coil noise matters much more
	- \rightarrow good coils essential
	- \rightarrow too many, small receive elements: SNR penalty (inside object)
- Transmit-receive surface coils: inhomogeneous B1+/- fields
- Body coil: 1H
	- \rightarrow x-nuclei require transmit coils
- Multi-channel Rx coils: good isolation required *(noise covariance part of fidall MNS prescan, also fidall manual 9.7)*

31P at 7T

SNR Scan

- SNR impacted by phantom, coil, MRI scanner, measurement
- Difficult to assess performance of setup
- Establish SNR standards across different sites, scanners, coils
- MNS phantom (WIP: Gold Standard Phantoms, Rapid): versatile, standardised, commercially available phantom containing 1H, 2H, 13C, 23Na and 31P spins
- Pink silicone oil phantoms: good for 13C
- Braino 1H MRS phantom: good for 31P
- Use standardised MRSI acquisition and reconstruction
- Fidall manual 9.2

31P 2D MRSI SNR Map

Discussion and Conclusion

- Always save and look at raw data
- Look at both FID & image/spectrum
- Be suspicious
- *"Garbage in garbage out"*
	- \rightarrow time on tracking down artefacts usually well spent

Literature (Spectroscopy Focused)

- 1. Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed. 2004 Oct;17(6):361- 81. Review.
- 2. Hurd RE. Artifacts and pitfalls in MR spectroscopy. In: Clinical MR neuroimaging. Cambridge Uni Press.
- 3. de Graaf RA. *In vivo* NMR spectroscopy. Wiley, 2nd edition. (plus many sub-references)

Hands-on Course for Advanced Research on GE MR

Target Attendees: MR Physicist, Researcher, Scientist.

Learning objectives: The aim of the course is to allow research partners to get familiar to the GE MR scanners and how to effectively perform research on it. That includes an introduction to system architecture (hard- and software), how to interface to the system, pulse sequence programming, reconstruction, obtaining raw data, troubleshooting and more. Hands-on sessions on the MRI will provide direct learning experience.

Requisites: valid research key, Linux, C/C++, MATLAB, Python, knowledge of MR theory, operation of GEHC MR scanner

Course Teachers: Applied Science Laboratory Europe Team

Location: GE HealthCare, Oskar-Schlemmer-Str. 11, 80807 Munich

Date: January 20-23, 2025 **Registration Fee; Deadline:** 650€; Dec. 1, 2024

Costs: Registration fee includes VAT, lunch, dinner and refreshments. Participants are expected to cover their own travel expenses (flight, hotel, etc).

Organizers:

José de Arcos: jose.dearcos@gehealthcare.com Mika Vogel: mika.vogel@gehealthcare.com Rolf Schulte: rolf.Schulte@gehealthcare.com Timo Schirmer: timo.schirmer@gehealthcare.com **Info:** <https://weconnect.gehealthcare.com/> **Registration:** [https://axtravel.eventsair.com/ge-1st](https://axtravel.eventsair.com/ge-1st-hands-oncourse-for-advanced-research-on-ge-mr-2025/gehc/Site/Register)[hands-oncourse-for-advanced-research-on-ge-mr-](https://axtravel.eventsair.com/ge-1st-hands-oncourse-for-advanced-research-on-ge-mr-2025/gehc/Site/Register)[2025/gehc/Site/Register](https://axtravel.eventsair.com/ge-1st-hands-oncourse-for-advanced-research-on-ge-mr-2025/gehc/Site/Register)

