Hyperpolarized ¹³C MRI via dissolution Dynamic Nuclear Polarization

Arnaud Comment – Aarhus Training Course Oct 2024

Why hyperpolarizing ¹³C?

- No need to hyperpolarize ¹H since human body contains 40 M ¹H₂O
- Other nuclei are however less concentrated and SNR is too low for MRI scans
- Carbon forms the backbone of most molecules involved in metabolic processes
- ¹³C exhibits large chemical shift dispersion
- Real-time detection of metabolic fluxes
- High contrast-to-noise ratio images

G. D. Reed *et al.* IEEE T. Med. Imaging 2014

Dynamic Nuclear Polarization (DNP)

- In 1952, Overhauser predicted the possibility to transfer the large electron spin polarization to nuclear spins
- In 1953, Carver and Slichter demonstrated that nuclear spin polarization can indeed be enhanced by electrons in metals and liquids
- In 1957, Jeffries showed that nuclear spins can be polarized by electron spins using forbidden transitions in paramagnetic crystals
- In 1958, Abragam introduced the concept of "solid effect" to describe DNP in diamagnetic solids containing free radicals

Albert W. Overhauser

Carson D. Jeffries

Charles P. Slichter

Anatole Abragam

DNP by solid effect

• Polarization transfer through "forbidden" transitions

• Energy balance: $h(v_e - v_n) + hv_n = hv_e$

Thermodynamic description of solid effect

• Spin polarization:

$$\boldsymbol{P} = \frac{\hbar \gamma B_0}{2k_B \boldsymbol{T}}$$

• <u>Spin temperature</u>:

$$\boldsymbol{T_S} = \frac{\hbar\gamma B_0}{2k_B \boldsymbol{P}}$$

- <u>Coolant</u>: polarized electron spins
- Driving power: microwaves
- <u>Dissipation</u>: heat into liquid He bath

Thermodynamic description of thermal mixing

• Short $T_{2,e}$, $T_{1,e}$ and long $T_{1,n}$, $T_{1,d}$

Temperature and field dependence of DNP

- No quantitative theoretical model for DNP has been developed to date
- Qualitative trend provided by numerical solutions of Borghini model (Thermal mixing)

M. Borghini Phys. Rev. Lett 1968

A. Comment et al. Concepts Magn. Reson. 2007

• Experimental results match theoretical predictions

GE HealthCare

What is the optimal temperature for DNP?

 In a field larger than 3 T, electron spins are polarized to ~100% below 2 K

$$\boldsymbol{P}_{eq} = \frac{\hbar \gamma \boldsymbol{B_0}}{2k_B \boldsymbol{T}}$$

 For a given magnetic field (e.g. 5 T), the optimal temperature for DNP will mostly depend on T_{1,e}

A. Comment and M. E. Merritt, Biochem. 2014

What is the ideal magnetic field for DNP?

- Because T_{1,e} becomes too short at higher fields, higher EPA concentration is needed
- 7 T is most likely the optimal field

Dissolution DNP for Hyperpolarized ¹³C MR

 Solid-to-liquid phase transition should be rapidly performed in high magnetic field environment to maintain enhanced nuclear spin polarization ⇒ in situ dissolution

Preclinical in vivo studies

A. Comment et al. Concepts Magn. Reson. 2007

7 T / 1 K hyperpolarizer

3 s delay between dissolution and injection

Hyperpolarized ¹³C MRI - Hardware for clinical research

SIGNA™ Premier with MNS

GE HealthCare

Clinical Hyperpolarized ¹³C MR Study - Work Flow

Hyperpolarized ¹³C-pyruvate vs. ¹⁸F-FDG

 While ¹⁸F-FDG provides a contrast based on cellular glucose uptake, HP ¹³C-pyruvate allows the direct measurement of downstream metabolic products (multiple pathways can be simultaneously probed)

\Rightarrow potentially different metabolic contrast

- The injected dose of HP ¹³C-pyruvate (~0.1 mmol/kg) is much larger than ¹⁸F-FDG (~0.1 nmol/kg) but ¹³C-pyruvate is a non-radioactive endogenous molecule (proven safety)
- Lifetime of the HP state of ¹³C-pyruvate is on the order of T₁=1 min, which requires a much shorter delay between preparation and injection (typically 1 min)

R. Woitek and F. A. Gallagher, Br. J. Canc. 124, 1187 (2021)

MR metabolic imaging with hyperpolarized ¹³C-pyruvate

Resonances from [1-¹³C]pyruvate and its metabolic products are clearly separated at 3T Time course for substrate and products relates to metabolic fluxes

2000

- 1000

80

Signal intensity (arbitrary units

16

Real-time MR metabolic imaging

Enough signal to acquire image of individual metabolites at different time point

40

Lactate

60

70

Alanine

20

30

Time (s)

10

Pyruvate

Λ

Hyperpolarized ¹³C MRI

Unique modality to non-invasively image cellular metabolism in real time

Pyruvate 0.75 x 0.75 cm²

- No heavy metals
- No ionizing radiation

- Injection of ¹³C-labelled endogenous molecules
- Neither severe nor mild adverse effects were reported following the injection of hyperpolarized ¹³C-pyruvate (0.1mmol/kg) in nearly 1000 subjects (up to 9 injections in same subject)

Probing cell metabolism with ¹³C

Carbon forms the backbone of most molecules involved in metabolic processes

A. Comment and M.E. Merritt, Biochem. 53 (2014)

Brain

Consumes ~50% of total blood glucose

Heart

Consumes fatty acids, ketone bodies and carbohydrates to produce mechanical work

Liver

Stores and releases carbohydrates, ketone bodies and fats; regulates blood glucose level

Diseases are generally characterized by abnormal metabolism

Assessment of tumor grade in human prostate cancer

Correlate histological grade of human prostate tumor with hyperpolarized ¹³C imaging data

K.L. Granlund et al., Cell Metab (2020)

- Conversion of HP ¹³C pyruvate to lactate in human prostate cancer was found to increase with Gleason score.
- ¹³C lactate can potentially be a direct imaging biomarker for tumor aggressiveness

Applications in humans are SNR limited

10-15% ¹³C polarization on [1-¹³C]pyruvate at time of injection

¹³C-lactate

72 y.o

23 y.o

80° flip angle

¹³C-lactate

80° flip angle

11° flip

angle

(ge

B. Uthayakumar et al. Hum Brain Mapp. 2023

Recurred

10

5

Responded

Tumor Status

C. Y. Lee et al. J. Neuro-Oncol. 2021

Higher SNR will allow improving the resolution and quantification of metabolites

20

Can SNR be increased by increasing injected ¹³C-probe dose?

- Pyruvate is typically injected at highly supraphysiological dose (about 10 times physiological dose in humans and up to 100 times in animals)
- This may alter the metabolic information obtained from the hyperpolarized ¹³C scans

Case study: [1-¹³C]pyruvate liver metabolism in healthy rats

- ¹³C-bicarbonate is from PDH activity in fed rats
- ¹³C-bicarbonate signal is prominently from PEPCK activity in fasted rats

[1-¹³C]pyruvate liver metabolism in fasted rats

Pyruvate dose study in rat liver

- Doses as low as 0.023mmol/kg were injected, leading to about 2 to 3-fold the normal basal physiological level
- Alanine decreases in fasted state for all doses (consistent with Hu *et al.*, Mol Imag Biol 2009)

E. Can et al. Comm. Biol. 2022

Pyruvate dose study in rat liver

- Bicarbonate signal significantly decreases in fasted state but only apparent at lower doses
- PDH is most likely saturated at higher doses in fed state
- In fasted state, liver bicarbonate signal should provide a direct relation to flux through PEPCK

• Results will depend on the dose in fed state

¹³C-probes that can be injected at physiological doses

- Glucose and lactate blood concentration are on the order of mM
- Hyperpolarized ¹³C-glucose and ¹³Clactate can be injected at physiological dose

Real-time cerebral glucose metabolism

GE HealthCare

Real-time liver lactate metabolism

- Higher ¹³C polarization allows injecting lower doses
- Injection of 1mL of a 40mM lactate solution in a 350g rat
- Plasma lactate concentration is on the order of 1.5mM, which is the physiological level in rats
- Lactate-to-pyruvate ratio is about 15, which is what one can expect in the rat liver.

A. Gaunt et al., Angew. Chem. 2021

Minimizing delay between dissolution and injection into humans

- Rapid dissolution of large sample (1-2mL) + Neutralization (10s)
- Need to filter polarizing agents (radicals) out
- Transfer into QC syringe
- Fast Quality Control (T, pH, ¹³C-probe concentration, residual radical concentration)
- Can photo-induced polarizing agents help?

GE HealthCare

T. R. Eichhorn, et al., PNAS 2013

Spontaneous radical quenching upon dissolution

Conclusions

- dDNP provides high level of ¹³C polarization enabling metabolic imaging in humans and it is safe and versatile
- Depending on the metabolic pathways probed by HP ¹³C-pyruvate, the supraphysiological dose from the bolus injection may not reflect the normal physiology: HP ¹³C-pyruvate is not a tracer and ¹³C needs to be polarized to the highest level possible for ¹³C MRI since low polarization cannot be compensated by increasing concentration (unlike in PET imaging)
- Because of their higher normal plasma levels, HP ¹³C-lactate and HP ¹³C-glucose experiments can be performed while maintaining a physiological level but low metabolic product pool sizes or shorter T₁ means that a large ¹³C polarization is still required
- Higher ¹³C polarization can be obtained by improving solid-state DNP but also by decreasing the delay between dissolution and injection
- Photo-induced radicals would remove the need for radical filtration and enable producing purely endogenous imaging agents

Acknowledgments

Adam Gaunt Jennifer Lewis Irene Marco-Rius **Tian Cheng** Andrea Capozzi **Emine Can Tim Eichhorn** Jessica Bastiaansen Yuhei Takado Mor Mishkovsky Najat Salameh Hikari Yoshihara Jean-Noël Hyacinthe Jacques van der Klink

Kevin Brindle Friederike Hesse Alan Wright Felix Kreis Dominique-Laurent Couturier EPFL

Rolf Gruetter Christophe Roussel

Mathilde Lerche

Magnus Karlsson

UF UNIVERSITY *of* **FLORIDA**

6) GE HealthCare

Albert Chen

European Research Council

Matthew Merritt

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

