Hyperpolarization in small animal models

International Training Course 2024 MR Research Centre, Aarhus University

10th October 2024

1	Importance of animal models	Different types of small animal models & their importance for research
2	How to choose your animal model	What should you consider? What are potential pros and cons?
3	Small animal handling	Hygiene, Anaesthesia, Catheters
4	Application examples	Oncology, Metabolic disease, Neurology
NV	I S I 🗭 N	

٦.	2.	3.
Understand disease mechanisms & biological processes	Develop and test diagnostic and therapeutic tools	Leverage ethical and practical advantages

$N \vee | S | \bigotimes N$

1. Understand disease mechanisms & biological processes

- Many small animal models **share genetic, molecular, and physiological similarities** with humans
- Learn about **tissue composition and function** in healthy and different disease states
- Understand **anatomy and morphology** of organs, compartments and subjects
- **Track changes i**n molecules, cells, and structures over time (e.g. disease progression)
- Study genetic or molecular markers that **predict outcomes**

$N \vee I S I \bigotimes N$

2. Develop and test diagnostic and therapeutic tools

- Evaluate HP agent distribution and behaviour within the body
- Investigate toxicity, safety, and efficacy of new imaging agents/drugs/viral vectors
- Verify effectiveness of treatments before advancing to clinical trials
- **Refine HP agents and methods** to improve early detection or treatment personalization
- Evaluate **how diseases respond to specific therapies** using imaging biomarkers
- Investigate individual variability in response to treatments

N V I S I 🚫 N

3. Leverage ethical and practical advantages

- Perform **longitudinal imaging studies** over time that could be impractical for humans
- **Conduct invasive procedures for complementary information** (e.g. biopsies) that enhance data for tracking changes in disease progression and response over time
- Ability to have **larger sample sizes** and better statistical power at a fraction of the cost of human trials
- Test multiple treatment strategies or imaging methods in parallel

N V I S I 🛇 N

$\mathsf{N} \lor \mathsf{I} \mathsf{S} \mathsf{I} \bigotimes \mathsf{N}$

Types of animal models can range from normal health conditions to those with experimentally induced diseases.

 $\mathbb{N} \setminus \mathbb{N} = \mathbb{S} = \mathbb{S} \setminus \mathbb{N}$ Vanhove C. *et al.* **EJNMMI Physics (2015) 2:31**

2.) How to choose your animal model

- · What is my hypothesis ? Which disease/ treatment response?
- Which models are commercially available? If not should I make one?
- Which imaging method(s) should I choose?
- How sensitive are my methods?
- Which sample size do I need to achieve significance? (talk to a biostatistician!)
- Should I study both males and females (yes!)?
- Should I do a longitudinal study or a one time-point study?
- Do I need regional information of non-localized data enough?
- How heterogeneous is my region of interest? What resolution do I need?
- Which MR coil type and size should I choose?
- Which correlative ex vivo studies shall I conduct after the imaging experiment ?

2.) PROs & CONs of small animal models

- low cost of purchase and housing
- possible to breed, combine mutations, develop new models
- wide range of immuno-deficient and humanized strains available
- 99% homology with human genome
 → some similar diseases as humans
- big advances in mouse genomics, vast viability of GEM
- wide range of animal models for human diseases available
- reproductive and nervous system are like those in humans

CONs

- fast breathing = motion artefacts
- small size of vessels and organs = difficult to operate, obtain arterial input function
- small blood volume, limited injection volume
- differences in treatment efficacy and immune responses
- immune reactions and differences in receptor expression in small animals can limit treatment efficacy compared to humans.
- Translational limits → treatments might show significant effects (e.g., tumor reduction) in mice, but may not translate to humans

$N \vee I S I \bigcirc N$

$\mathsf{N} \lor \mathsf{I} \mathsf{S} \mathsf{I} \bigotimes \mathsf{N}$

All animal imaging studies and related activities must be performed according to established procedures, that are unique in each country

- Tables, floor and any instruments in contact with the animals, such as surface coils, must be cleaned with disinfectant before and after the imaging
- Animal transportation to and from imaging suites should be performed in an enclosed escape-proof cage/secure container that limits exposure between animals and humans and ensures safety of the animal
- Personnel must wear proper **personal protective equipment** (e.g. gowns or scrubs, gloves, masks, safety glasses, and shoe covers) when handling animals

$N V | S | \bigotimes N$

The role of anaesthesia in small animal experiments:

- Minimizes stress and motion artifacts during imaging procedures
- Facilitates surgical and imaging procedures → ensures the animal remains still and comfortable for the duration of invasive interventions or prolonged imaging sessions.
- **Regulates physiological parameters** like heart and respiratory rates → ensure physiological reproducibility of studies
- Gas anesthesia is easier for hyperpolarized metabolic imaging in small animal models
- Imaging awake animals is possible !

Example study I

Anaesthesia - Different anaesthetics have different haemodynamic effects

$N \vee I S I \bigotimes N$

Example study II

Anaesthesia - Haemodynamics affect observed pyruvate-to-metabolite labelling rates

Significant differences in apparent lactate-to-pyruvate and bicarbonate-to-pyr uvate labelling rates between different states, which could be largely explained by haemodynamic alterations Haemodynamics impact the observed pyruvate-to-metabolite labelling rates and area-under-time course ratios of referenced to pyruvate.

NMR IN BIOMEDICINE

Metabolism of hyperpolarised [1-13C]pyruvate in awake and anaesthetised rat brains, Hyppönen et al 2021

Urethane-anaesthetised animals most closely resemble awake rats and differ from isoflurane-anaesthetised and medetomidine-sedated animals.

N V I S I 🛇 N

Example study III

Anaesthesia - Choice of anaesthesia can alter detection of downstream metabolites

$N \vee I S I \bigotimes N$

The role of catheters in small animal experiments:

- Facilitate **administration of hyperpolarized agents** like [1-13C]pyruvate directly into the bloodstream → critical for precise timing and accurate dosing in HP MRI experiments.
- Enable **repeat injections** without causing added stress to the animal.
- Avoid repeated handling for injections → reduce animal stress and motion during imaging → help with minimizing artifacts and improving data quality.

3.) Small animal handling: Catheters

Contents lists available at ScienceDirect

Journal of Magnetic Resonance Open

Check for updates

journal homepage: www.sciencedirect.com/journal/journal-of-magnetic-resonance-open

Research article

Polarization losses from the nonadiabatic passage of hyperpolarized solutions through metallic components

James Eills^a, Marc Azagra^a, David Gómez-Cabeza^a, Michael C.D. Tayler^b, Irene Marco-Rius^{a,*}

^a IBEC - Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain ^b ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain

J. Eills et al.

N V I S I 🛇 N

$N \vee I S I \bigotimes N$

Tumor stratification - Pancreatic cancer

Model: Rat xenografts of human cell lines with transcriptionally-defined classical (HPAC) and quasi-mesenchymal (QM, PSN1) subtypes

What are the metabolic differences between molecular tumor subtypes?

Oncology

Increased lactate and pyruvate production was observed in aggressive QM subtype in comparison to classical subtype of pancreatic cancer, indicating highly metabolically active tumor

BMC Cancer & Metabolism

Functional noninvasive detection of glycolytic pancreatic ductal adenocarcinoma, Heid et al 2022

N V I S I 🛇 N

Early detection & risk assessment -Metabolic dysfunction-Associated Steatohepatitis (MASH)

Model: MAFLD in rats, methionine-choline deficient (MCD) diet HP agent: [1-13C]∝-ketobutyrate (∝ KB), a close molecular analog of pyruvate with modified specificity for LDH isoforms

Fatty liver disease: What are the early metabolic changes?

HP-MRI shows a mean drop of 52% in the apparent metabolic conversion of ∝ KB to ∝ HB in the liver after six weeks of a MCD diet → HP-MRI can be used to detect hepatic metabolic changes in early MASH

Detection of early-stage NASH using non-invasive hyperpolarized 13C metabolic imaging, Morze et al, 2024

N V I S I 🚫 N

MRI

Assays

N V I S I 🕅 N

Monitoring inflammation: Transient significant increase of HP [1-13C] lactate-to-pyruvate ratio in mice models, driven by inflammatory response

Controlled cortical impact

Baseline 12h 24h

7d 28d

Transient significant increase of HP [13C] lactate-to-pyruvate ratio can be monitored with MRI

Correlated with inflammation in assays

- Increased in CD68 and CD11b macrophage levels
- Decreased PDH activity
- Unchanged LDH activity

SCIENTIFIC

REPORTS

natureresearch

University of California San Francisco

PDH activity DDH activity DDH

7d

28d

Baseline 12h 24h

THANK YOU!

Acknowledgement to Dr. Irina Heid for sharing some of her teaching materials for this presentation.

Questions? Comments?

myriam.chaumeil@nvision-imaging.com

www.nvision-imaging.com

$NVISI \otimes N$