Introduction to Magnetic Resonance - a general overview

Steffen Ringgaard

Nuclear spin

- Spin: basic property of particles
 - Angular momentum and magnetic dipole moment
- Discrete quantum states
- In MR, spins are flipped between the two states
- Photons with frequency proportional to ΔE will be emitted

Equilibrium, excitation, signal

In equilibrium, distribution of spins given by the Boltzmann equation

$$\frac{N_{down}}{N_{up}} = e^{-\frac{\Delta E}{k_B T}}$$

• At 3T:
$$\frac{\Delta N}{N_{up} + N_{down}} = 10 \text{ ppm}$$

- RF fields can flip spins between the two states
- After excitation, magnetization will oscillate and can induce current in receive coil

Description with classical physics

Repeated vs single excitation

Magnetization: sum of all magnetic dipoles

Precession frequency and angles

Signal =
$$sin(\alpha)$$

Remaining $M_z = cos(\alpha)$

Precession frequency
$$f = \frac{\gamma}{2\pi}B_0$$

Precession phase: given by f duration and RF phase

$$\varphi = \varphi_0 + f \cdot t$$

Often both x- and y-projections are sampled

Spectroscopy

- Electrons shields nuclei slightly
 - Chemical shielding
- Frequency at nuclei determined by specific electronic structure
- Larmor relation $f = \frac{\gamma}{2\pi}B_0$
- Sampling of temporal signal variation
 - Fourier Transformation
 - Signal on frequency axis
- Signal amplitude given by molecular concentration

Principles of MR imaging

• Encoding spatial information in MR signal

Frequency encoding

3 dimensions and k-space

K-space

- Fourier inverse to normal space
- Images can be decomposed to weighted sum of spatial frequencies
- Each spatial frequency symbolized by point in k-space
- In MR, the amplitude of spatial frequencies are sampled
 - Spatially dephased magnetization corresponds to one spatial frequency

- Signal is sampled in k-space
- Using gradients to move around in k-space
- After having sampled the entire k-space, images can be reconstructed by 2D inverse Fourier Transformation

Different ways to sample k-space

K-space filtering

Image

K-space

Frequency + spatial information

- Frequency adds one extra information dimension
 - Time consuming
 - Lower spatial resolution

Signal amplitude and noise

- Signal amplitude given by
 - Density of nuclei
 - Proton density is high
 - Gyromagnetic ratio γ
 - Signal $\propto \gamma^3$
 - Polarization
 - For standard MR around 10 ppm
- Noise
 - Mainly from patient
- $SNR = \frac{signal}{noise}$
- Signal on scanner is not absolute

Functional MR methods

- Static or dynamic imaging
 - Various contrast choices: T1w, T2w, T2*w, etc
- Functional MRI methods
 - Diffusion weighted MRI
 - Blood perfusion measurements
 - Phase contrast flow measurements
 - BOLD based fMRI
 - Cell metabolism with hyperpolarized bioprobes

Diffusion weighted MRI

Free diffusion: Water molecular motion only limited by collision with each other

Restricted diffusion: In biological tissue. Water molecular motion limited by collisions with cells and macromolecules

Diffusion measurement in stroke

Acute

2 hours

24 hours

Infarction area

Assessment of anisotropic diffusion

- Can also use more advanced models
 - Neurite density
 - Neurite orientation dispersion index
 - Kurtosis
 - IVIM

White matter tractography example

Blood perfusion measurements

- Injection of contrast agent
 - DSC, DCE
- Labelling arterial blood
 - ASL
- Quantitative parameters obtained using models
- Hyperpolarized MR
 - Urea, pyruvate

fMRI

- Mapping of brain activity
- Based on blood flow variations
- BOLD: differences in T2* of oxy- and de-oxy blood
- Activation or resting state based
- Low signal differences
 - Multiple averages and statistical measures needed

Phase contrast, vessel blood flow

- Blood flow in vessels
- Measuring global cardiac function
- Assessing heart value integrity and vessel stenoses

$$Mean\,flow_{vessel} = \frac{\sum_{frames}Flow_{vessel}}{N_{frames}}$$

$$Stroke \ vol = \frac{Mean \ flow}{Cycle \ time}$$

Hyperpolarized MR

- MR molecular imaging
- In vivo study of various metabolic pathways
- [1-¹³C] pyruvate
 - Glycolysis, aerobic vs an-aerobic metabolism, pH
 - Cancer probe, monitor of therapy response
- [2-¹³C] pyruvate
 - Study of TCA cycle pathways
- [1,4-¹³C₂] Fumarate
 - Detection of cell necrosis
- ¹²⁹Xe Xenon gas
 - Assessment of lung function

History of MR

- ~1943: Spin and interaction with radiofrequency fields discovered
- ~1973: Paul Lauterbur made the first MR images
- 1980 ->: MR being used for clinical non-invasive imaging
- 1953: Overhauser predicted the possible manipulation of nuclear Boltzmann distribution transferring polarization from electrons
 - Initially doubted by Bloch, Rabi, Ramsey etc
- 1953: Experimental verification by Carver and Slichter
- 1994: Hyperpolarized Helium and Xenon introduced for lung imaging
- 2013: Ardenkjær introduces dDNP and showed a factor >10000 signal enhancement for ¹³C

Summary

- Traditional MR
 - Frequency of signal: information about chemical structure
 - Spatial information: enables imaging
 - Allows measurements with different contrasts and functional measurements
 - Signal is low: some methods on the edge of useful sensitivity
- Hyperpolarization
 - 10000 to 50000 fold signal enhancement
 - Enables new measures of metabolism
 - Much larger signal but sensitivity still an issue