Introduction to Magnetic Resonance - a general overview

Steffen Ringgaard

Nuclear spin

- Spin: basic property of particles
	- Angular momentum and magnetic dipole moment
- Discrete quantum states
- In MR, spins are flipped between the two states
- Photons with frequency proportional to ΔE will be emitted

Equilibrium, excitation, signal

• In equilibrium, distribution of spins given by the Boltzmann equation

$$
\frac{N_{down}}{N_{up}} = e^{-\frac{\Delta E}{k_B T}}
$$

• At 3T: $\frac{\Delta N}{N}$ $N_{\boldsymbol{u} \boldsymbol{p}}$ +N $_{down}$ $= 10$ ppm

- RF fields can flip spins between the two states
- After excitation, magnetization will oscillate and can induce current in receive coil

Description with classical physics

Repeated vs single excitation

Magnetization: sum of all magnetic dipoles

Signal sampling

Precession frequency and angles

$$
Signal = sin(\alpha)
$$

Remaining $M_z = cos(\alpha)$

$$
Precession frequency f = \frac{\gamma}{2\pi} B_0
$$

Precession phase: given by f duration and RF phase

$$
\varphi = \varphi_0 + f \cdot t
$$

Often both *x*- and *y*-projections are sampled

Spectroscopy

- Electrons shields nuclei slightly
	- Chemical shielding
- Frequency at nuclei determined by specific electronic structure
- Larmor relation $f = \frac{\gamma}{2\pi}B_0$
- Sampling of temporal signal variation
	- Fourier Transformation
	- Signal on frequency axis
- Signal amplitude given by molecular concentration

Principles of MR imaging

• Encoding spatial information in MR signal

Frequency encoding

3 dimensions and k-space

K-space

- Fourier inverse to normal space
- Images can be decomposed to weighted sum of spatial frequencies
- Each spatial frequency symbolized by point in k-space
- In MR, the amplitude of spatial frequencies are sampled
	- Spatially dephased magnetization corresponds to one spatial frequency

- Signal is sampled in k-space
- Using gradients to move around in k-space
- After having sampled the entire k-space, images can be reconstructed by 2D inverse Fourier Transformation

Different ways to sample k-space

K-space filtering

Image **K-space**

Frequency + spatial information

- Frequency adds one extra information dimension
	- Time consuming
	- Lower spatial resolution

Signal amplitude and noise

- Signal amplitude given by
	- Density of nuclei
		- Proton density is high
	- Gyromagnetic ratio γ
		- Signal $\propto \gamma^3$
	- Polarization
		- For standard MR around 10 ppm
- Noise
	- Mainly from patient
- $SNR = \frac{signal}{noise}$ noise
- Signal on scanner is not absolute

Functional MR methods

- Static or dynamic imaging
	- Various contrast choices: T1w, T2w, T2*w, etc
- Functional MRI methods
	- Diffusion weighted MRI
	- Blood perfusion measurements
	- Phase contrast flow measurements
	- BOLD based fMRI
	- Cell metabolism with hyperpolarized bioprobes

Diffusion weighted MRI

Free diffusion: Water molecular motion only limited by collision with each other

Restricted diffusion: In biological tissue. Water molecular motion limited by collisions with cells and macromolecules

Diffusion measurement in stroke

Acute 2 hours 24 hours 24 hours

Infarction area

Assessment of anisotropic diffusion

- Can also use more advanced models
	- Neurite density
	- Neurite orientation dispersion index
	- Kurtosis
	- IVIM

White matter tractography example

Blood perfusion measurements

- Injection of contrast agent
	- DSC, DCE
- Labelling arterial blood
	- ASL
- Quantitative parameters obtained using models
- Hyperpolarized MR
	- Urea, pyruvate

fMRI

- Mapping of brain activity
- Based on blood flow variations
- BOLD: differences in T2* of oxy- and de-oxy blood
- Activation or resting state based
- Low signal differences
	- Multiple averages and statistical measures needed

Phase contrast, vessel blood flow

- Blood flow in vessels
- Measuring global cardiac function
- Assessing heart valve integrity and vessel stenoses

Mean flow_{vessel} =
$$
\frac{\sum_{frames} Flow_{vessel}}{N_{frames}}
$$

$$
Stroke\ vol = \frac{Mean\ flow}{Cycle\ time}
$$

Hyperpolarized MR

- MR molecular imaging
- In vivo study of various metabolic pathways
- $[1-13C]$ pyruvate
	- Glycolysis, aerobic vs an-aerobic metabolism, pH
	- Cancer probe, monitor of therapy response
- $[2^{-13}C]$ pyruvate
	- Study of TCA cycle pathways
- $[1,4$ -¹³C₂] Fumarate
	- Detection of cell necrosis
- ¹²⁹Xe Xenon gas
	- Assessment of lung function

History of MR

- ~1943: Spin and interaction with radiofrequency fields discovered
- ~1973: Paul Lauterbur made the first MR images
- 1980 ->: MR being used for clinical non-invasive imaging
- 1953: Overhauser predicted the possible manipulation of nuclear Boltzmann distribution transferring polarization from electrons
	- Initially doubted by Bloch, Rabi, Ramsey etc
- 1953: Experimental verification by Carver and Slichter
- 1994: Hyperpolarized Helium and Xenon introduced for lung imaging
- 2013: Ardenkjær introduces dDNP and showed a factor >10000 signal enhancement for 13C

Summary

- Traditional MR
	- Frequency of signal: information about chemical structure
	- Spatial information: enables imaging
	- Allows measurements with different contrasts and functional measurements
	- Signal is low: some methods on the edge of useful sensitivity
- Hyperpolarization
	- 10000 to 50000 fold signal enhancement
	- Enables new measures of metabolism
	- Much larger signal but sensitivity still an issue