

MR hardware considerations for hyperpolarised MRI

Jim Wild Aarhus October 2024

Polarisation and size of signal

Magnetisation density

 $m_0 = \mu P N/2$,

- μ is the nuclear magnetic moment
- *N* is the number of atoms per unit volume
- *P* is the polarisation

e.g.

80 ml ³He P (~30%) mixed with 920 ml N₂ at 1 bar: $m_0=6.4x10^{-3} JT^{-1}m^{-3}$

• comparable to the m_0 of a 1/ sample of ${}^{1}H_2O$ at 1.5T ($m_0=4.8 \times 10^{-3} \text{ JT}^{-1} \text{m}^{-3}$)

The magnet room

- Transmit-Receive (T-R) switches
- Pre-amplifiers
- Interfacing to the scanner
- RF hardware

Transmit-Receive (T-R) switch

• T-R switch – is a tuned circuit :

high isolation between transmit and receive lines

- broadband T-R switches are not optimum
- Needs to be power rated for Tx power 8kW reflection
- May need short ring down for UTE
- On board tuned preamplifier

RF coil transmit receive sensitivity vs homogoneity?

- "Coat hanger" RF coil ok for first steps
- Need better B1 homogoneity and volume coverage for good in-vivo HP imaging ...

27

<section-header> **F transmit homogoneity – birdcage coil**⁽B1 homogoneity ⁽spacious) ⁽ space for Rx array ⁽ quadrature easy) ⁽ Sigger coils – inductive coupling to the dot coupli

The spectrometer

- Pulse sequence conversion and programming for MNS/imaging (vendor specific)
- Disable any ¹H functionality that might destroy magnetisation
- prescans, gain calibration, auto shimming, dummy scans

<u>39</u>

First experiments

- Finding the signal
- Calibrating transmit gain and flip angle
- Calibrating receive gain

First experimental steps- finding the NMR signal

Thermal phantom

³He / ¹²⁹Xe gas cell 2bar with 1 bar O₂

- shorten T1 to seconds from hours

(T1 proportional to 1/[O2]) T1 129Xe in air ~ 20s ¹³C e.g. lactic acid with Gd-DTPA

– shorten T1

23Na saline

- f₀ sweep find the FID and spectrum
- signal source and search coil can help tune in

Unwanted noise sources

Unfiltered noise at non ¹H frequencies: Coherent **constant frequency** noise

Gradient power supply, and rapid pulsing of gradient coil generates high frequency noise

- filters in penetration panel tuned to block harmonics

@ ¹H f₀

Add ferrite chokes to gradient power cables

45

Jnwanted holse sources – RF cage tes							
						<u> </u>	
Frequency	Field	Test Position	Outside Reference Level (dB)	Inside Reading (dB)	Attenuation Level (dB)	P = Planewave	
5.89MHz	P/E	Α	-6	-99	93	Door	
5.89MHz	P/E	В	-6	-99	93	Window	
5.89MHz	P/E	С	-6	-102	96	Pen Panel	
21.29MHz	P/E	A	-0.64	-91.75	91.11	Door	
21.29MHz	P/E	В	-0.64	-89.98	89.34	Window	
21.29MHz	P/E	С	-0.64	-99.43	98.79	Pen Panel	
64MHz	P/E	Α	15	-88	103	Door	
64MHz	P/E	В	15	-82	97	Window	
64MHz	P/E	С	15	-71	86	Pen Panel	

